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1. Publishable summary 
This document gives an overview of a power-performance-area (PPA) study about the integration of 
non-volatile memory (NVM) into the SpiNNaker 2 hardware architecture for inference of deep neural 
networks (DNN). Starting point of the study is the existing architecture and implementation of the 
SpiNNaker 2 neuromorphic hardware. SpiNNaker 2 is a many-core chip in GF 22nm FDx technology 
with 153 low-power ARM-based processing elements for the energy-efficient processing of both 
biologically inspired and deep neural networks. Each processing element has an integrated machine 
learning accelerator for the efficient processing of convolutional and fully-connected layers. While the 
existing SpiNNaker2 chip is heavily based on SRAM, NVM technology is becoming more and more 
mature allowing a streamlined integration into CMOS manufacturing processes in the near future. As 
NVM, and especially the FeFET (ferro-electric field-effect transistor) technology considered in this 
study, offers high potential for reducing the power consumption (both for leakage and memory 
access), it is of great interest to quantitatively study the impact of NVM integration for DNN inference 
on power, performance and silicon area on the chip-level. 

The approach in this study is as follows: we first choose an operating point (clock frequency) of the 
SpiNNaker 2 processing element that is compatible with the maximum speed of the considered NVM 
macros. Then, for a given task (processing a convolutional layer from VGG-16), we perform a power 
simulation and extract the power contribution of the SRAM and other components. Next, we 
hypothetically replace a varying number of SRAM macros by NVM macros for the storage of weights 
of the convolutional layer. Due to the lower energy per read of the NVM, this reduces the overall 
energy for processing the convolutional layer. At the same time, this leads to an increase of silicon 
area due to the lower memory density of the NVM compared to SRAM. We show and discuss the 
energy-speed-area trade-off between SRAM-only and SRAM+NVM setups in detail. 

The results show only a small energy-saving potential when replacing SRAM by NVM for DNN weight 
storage in the SpiNNaker2 architecture at the price of significantly increased silicon area. Ultimately, 
the existing SpiNNaker2 implementation shows the best energy-speed-area trade-off compared to the 
new considered variants at a lower clock frequency with and without NVM. 

The main conclusion to be drawn from this study is that a plain replacement of SRAM by NVM does 
not necessarily improve the system-level energy-efficiency. For the SpiNNaker2 architecture, which is 
optimized for low energy-per-operation, a setup with SRAM only provides the optimal operating point. 
Of course, NVM might play off its strengths for other DNN systems operating at lower speed or 
requiring a power-off mode. 
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