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Infroduction

+* Predictive maintenance (PdM) is the procedure industrial enterprises use to
predict future failure points and monitor an asset's condition in real-time.

+* The PdM technique leverages ML algorithms that take critical historical
data, such as vibration, temperature, and sound, as an input, thus
providing anomaly detection, classification and prediction related to the
condition of an asset in real-time.
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Background

* When processed and analysed intelligently, the

data from edge devices provides valuable
information/knowledge about manufacturin
process, production system an
equipment/motor.

* Al/ML methods are tools in PdM applications to
develop solutions to prevent failures in
equipment/motors operating in the industrial
production lines.

* The performance of PdM applications depends
on many factors, such as the appropriate choice
of Al/ML platforms.

* The selection of the Al frameworks/platforms
employed for edge Al machine learning/deep
learning implementations largely depend on the
application, the I1loT devices and their physical
operating environments.
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Sensor-driven PdM

* Sensor-driven PdM involves leveraging sensor data to
redict mechanical machine failures before they
appen.

e Rotating machine failures can be diagnosed and
redicted by analyzing the vibration signal derived
rom accelerometers connected on industrial
equipment.

e Sensor-driven PdM presents many challenges.
Transforming raw sensor data into actionable insights
is complex, time consuming, and costly, requiring a
systematic engineering approach to uilding,
deploying, and monitoring ML solutions.

* Many aspects need to be considered such as:

 What type of data will capture the differences between
classes

 What signal length will capture the differences between
classes

 What range of sensor values will fully capture the range of
the input information
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Experimental Architecture

* This micro-edge IloT device used for the | |
experiments comprises of: Multi-Sensors 10T Device

STTS751-Digital local temperature sensor

* Three axis ultrawide bandwidth (DC to 6 kHz) LPS22HH-Digital absolute pressure sensor
acce|erat|0n Sensor (ISM33ODHCX)’ a 12-b|t HTS221-Relative humidity and temperature sensor WI—FI
analog-to-digital converter, a user-configurable o |
digital filter chain, a temperature sensor, and a
serial peripheral interface. IMP34DTO5 Digital

MEMS microphone

e The micro electromechanical systems (MEMS)
vibration sensor has a selectable sensitivity (2,
+4, +8, or £16 g)

* Processing capabilities ensured by an Arm Cortex- ¥z

M4 processor (120 MHz, 640 KB RAM, 2 MB Flash). [ J&

* The mlcr_o—edge d'ev!ce can be powered externally STWIN Sensor Tile Wireless
or by an internal lithium-ion battery

e BLE and Wi-Fi connectivity.
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Including ML core

11S2DH-MEMS
motion sensor

11S3DWB-3-axis MEMS
vibration sensor
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Flexible Model Development Workflow

* The micro-edge Al processing flow has been implemented for each of the

frameworks selected.
2 o

REVVNIEL AL Firmware e
>19r Data Model Validation
Acquisition Code
Deployment

10T Device Labelling De§|gp ar-ld Generation
Optimisation Inference

—_
£ [ % '
W > Data Cleaning Features
and Extraction and Model Parameter Model Model Compile Target I
Raw Data Pre-processing Selection Selection Optimisation Validation Conversion Selected ML Solution I

Sensors/Actuators

Micro-edge Al Processing Flow ~ ~ Inference

~
Define Task Selected Sensors Acquire/Upload Automated ML Deploy/Download
Classification Target HW MCU Data Processing ML Package

£ -~ 8 Al &3
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Benchmarking Based on Three Different Frameworks

* In ML, benchmarking is the practice of comparing the
performance of different model architectures within the
same framework.

* In this presentation, benchmarking is about comparing
different Al/ML platforms, which poses challenges due to

(/f% g the large number of factors involved.

* The aim has been to identify the most critical factors that
impact on performance (key differentiating indicators -
NANOEDGE Al KDIs) and define consistent Al workflows.

STUDIO * Three existing frameworks and inference engines for
integrating Al mechanisms within MCUs have been
employed:

» * Qeexo AutoML - automated ML platform for Arm Cortex-MO-to-
M4-class processors

=~ EDGE IMPULSE * NanoEdge™ Al (NEAI) Studio,
M e Edge Impulse (El)
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Use Case Design

e Classification of the state of a motor based on vibration
measurements

A built-in three-axis accelerometer (ISM330DHCX) measures the
accelerations of three orthogonal directions

e Classes defined based on conditions (motor speeds) and sub-
conditions (malfunctions):

MIN: the motor is running at minimum speed
MED: the motor is running at half of the speed
MAX: motor is running at maximum speed

MIN_W: the motor is running at minimum speed with an excess load
producing a centrifugal force

MED_W: the motor is running at half of the speed with an excess load
producing a centrifugal force

MAX_W: the motor is running at maximum speed with an excess load
producing a centrifugal force

The use case was designed with the following goals in mind:

* The motor behaviour and the classification problem being solved with
ML/DL were studied in-depth

* Classes should be distinguishable for easier classification
* Data sets should be class-balanced

* Data sets should be properly split (training, validation, test)

Lyy

ISM330DHCX ”
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Comparison Factors

* The platforms offer various degrees of:
* Automation of various parts of the E2E workflow,

e Transparency into the ML/DL algorithms and
model architecture

 Control over model parameters and hyper
parameters

* Pre-analysis in Time and Frequency Domain
 Visualization and exploration of features

* Model generation, optimization and selection  nanoepce Al
STUDIO

* Testing

e Support for neural network architectures

* Customization for applications in PdM =- EDGE IMPULSE
* Deployment facilities

* Validation
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Automation of Various Paris of the E2E Workflow

 Automated machine learning (autoML) aims to make
easier and more accessible the use of ML algorithms
by removing tedious, iterative, and time-consuming
work across the E2E workflow.

* The autoML process comprises different tasks, such
as feature selection, feature extraction, model
selection, and hyper-parameter tuning. In spite of the
proliferation of autoML related technologies, many
parts of the E2E are still highly dependent on expert
Interventions.

* The process of automating machine learning covers a
wide range of automation topics, including:

- Data preprocessing B 100
* Feature extraction 9@
Feature engineering

Dataset
v

Optimisation

\ —
Metric/Parameter

Automated ML ML Model

Algorithm selection

Selected Sensors
Target HW MCU

Parameter and hyperparameter optimization o -

Model and data deployment, monitoring and management.
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Challenges

* Building high-quality machine learning models through autoML is an
iterative, resource-intensive, and time-consuming process that involves
many different components.

* The three platforms does this at various degree of automation
* Transparency and control over parameters and hyperparameters

* Deployment and inference

* The final step in the E2E workflow is to flash the compiled binary to STWIN and check
that the classifier is producing the expected output. As shown in the video version of
this presentation, the final model is able run inference on the embedded device and
accurately recognize a variety of anomalous states, in real time

e Support neural network architectures

* Al/ML platforms that do not support NN architectures, use feature extraction and
then select from a wide range of traditional ML models.

 NanoEdge — do not support NNs
* Edge Impulse and Qeexo — do support NNs

e Validation

e Although autoML compensate for many of the drawbacks of manual processes, it is
still important to verify that the E2E workflow is easily repeatable and reproducible.

* The particularities of verification and validation when deploying Al at the edie
require at least one complementary workflow implemented with another framewor

X/ \X
A/

LY

1
s
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Sampling Methodology

* Main parameters are the same: frequency, range; the .,

buffering method differ.

e Sampling frequency 1667 Hz; tested out different rates to
figure out what will be the best option

* The higher the frequency, the higher the chances to get
important features in the signal snapshot; however, look
for memory, latency, and power consumption constraints

* Collection of signals (of approx. 30 seconds).

* NEAI: The length of the signal snapshot is approximately
300 milliseconds (= 512/1667) for a buffer size of 512
samples on each axis, in total 1536 values per signal.

* Qeexo: The length of the signal snapshot is 50
milliseconds. The buffer size is approximately 83
samples: 50/(1000/1667). The buffer size can vary (due

to sample rate tolerance).

0 2T 4T 6T 8T 107
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9 10 1
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Three-step Signal Data Acquisition

NANOEDGE A = EDGE IMPULSE Qeexo

Uploaded Uploaded
COI Iected timestamp Xacc Yacc Zacc timestamp A label
0 1102 212 165
Format conversion o5 uw 6 m Format conversion Hiie
. Ly7 > e b 2 > 150 [[24899, 6033, 6153], [ MAX
330DHCX 4 24 958 -260 62 200 [[-10170, -1676, -1974 MAX
2.999 1043 -9 -67 250 [[654, -17090, -17916] MAX
3.599 1148 284 4 300 [[-2464, 7910, 5814], [ MAX
4199 1142 375 49 350 [[11335, -5959, -2154] MAX
- 400 [[18886, 22490, 19167 MAX
Signal_length (ms) = Signals length (50 ms)
Buffer_size/ODR*1000 Buffer_size=50/1000*ODR
Uploaded
Uploaded _ P Collected
timestamp Xacc Yacc Zacc
line 1 Xw y'1 z“, Xv yw z, (.) x::: yJ Z';', 0_2 iigi 212 i:z
‘ Xo Yo 25 X3 ¥y 2, ) X V... 2 12 1038 -246 98 Lyy
18 976 -347 2 ISM330DHCY
2.4 958 -260 -62
2999 1043 -9 -67
3.599 1148 284 4
4199 1142 375 9

All three platforms offer both data collection (directly from sensors) and upload (from files). Three steps:
1. Collect sensor data with the platforms that allow connection with STWIN, i.e., NEAI and Qeexo
2. Cross-conversion of sensor data format (between the platforms)
3. Cross-generation of data sets (training, validation and test) and upload
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Pre-analysis in Time and Frequency Domain
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Visualization and Exploration

A useful aspect is the possibility to visualise and explore the
features. The fact that the features are visually clustered isa °
good indication that the model can be trained to perform the - - ~ —!
classification. C

o q Feature explorer with Qeexo UMAP (Uniform Manifold Approximation and Projection) plot -
o e ° El (in 2D). Classes are shows how separable the classes under consideration are with
. B distinguishable. respect to the selected group of features.

@

3 -
Example from a previous project
with El (in 3D), where classes are Qeexo PCA (Principal Component Analysis) plot - shows how separable the
‘ not very distinguishable. classes under consideration are with respect to the selected group of features.
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Benchmarking

Benchmarking allows to compare the performance of
different model architectures within the same framework.

100,00 124 76 svM T w N
The confusion matrix of the validation data is a useful °
evaluation tool. °
Training Data (Cross Validation Data) e
(+]
o . .
1 O 20
Max- 356 [L.00] O [0.00] O [0.00] © [0.00] © [0.00] O [0.00] [] o
R 5 s r # °
Max_Ww- 0 [0.00] 356 [1.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 08 ) i ¥ - e
-;.: MED- 0 [0.00] 0 [0.00] 356 [1.00] O [0.00] 0 [0.00] 0 [0.00] 0.8 a5
-
%lx-’ED_'v’-;— 0 [0.00] 0 [0.00] 0 [0.00] 356 [1.00] 0 [0.00] 0 [0.00] 0.4
|_ . . . .
wn- 0 ©0o] O pool o poo] o poo) IR o moo . Benchmarking with NEAI. All correctly classified (green dots)
MiN_W- 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 356 [1.00] 5 99.8% 0.06
‘-.'1.:':\‘{ WA )I(\_w M |IE D M EE)_'-"-" |-.V.1I| N ] f:_'-"-" Confusion matrix (validation set)
Predicted Label . .
Benchmarking  with  EL
Benchmarking with Qeexo. Confusion matrix for SYM model Confusion matrix and data
explorer.
Artificial Neural Network 1.0 +/- 0.0 1.00 Click 6862 KB m 3 3] o 1] Data explorer (full training set) @
Decision Tree 099 +/- 0.01 087 Click 1808 m 3 E| m o MAX - correct CorreCtly ClaSSIfIEd (green
Support Vector Machine 1.0 +/- 0.0 099 Click 108kB m 3 :-Z| o m E%\h dOtS) and miSC|aSSiﬁed (red

MIN - co
M|
MA;
MED - i

dots).

[N N N N N NN

Benchmarking with Qeexo. Overview trained models.
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Testing

* Testing is evaluation of the trained model performance on the
testing dataset or live to analyse how well the model performs
against unseen data prior to its deployment on the device.

* Live testing ensures unbiased evaluation of model effectiveness
(completely new signals, not seen before).

* The results show that the classifier manages to properly reproduce
and detect all classes with reasonable certainty percentages, and
these are comparable

97.43%

Feature explorer @

MAX_W - correct
MED - correct ®e

MED_W - correct

MIN - correct

MIN_W - correct

[ X N N N N N

MAX - incorrect
MED_W - incorrect

El testing with test datasets based on signals collected with NEAI

lum n 46
Serial
66 - ] 544 -
13 101992
74-
Live Repartition % Total Repartition
MIN 1§ MIN 1
MED 0 MED 0
MAX 0 MAX 0
MIN_W 0 MIN_W 9
MED_W 99 MED_W 25
MAX_W 0 MAX_W 1
20 40 60 80 100 0 5 10 15 20

Live testing using NEAI microcontroller emulator
Test Data

==
MAX- 297 [1.00] O [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] | |

MAX_W- 0 [0.00] 281 [0.95] 16 [0.05] 0 [0.00] 0 [0.00] 0 [0.00] 08
2 .
-g MED- 0O [0.00] 0 [0.00] 297 [1.00] O [0.00] 0 [0.00] 0 [0.00] 0.6
—
% MED_W- 0 [0.00] 0 [0.00] 0 [0.00] 297 [1.00] O [0.00] 0 [0.00] 0.4
=

MiN- O [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 297 [1.00] O [0.00]
MIN_W- 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 0 [0.00] 297 [1.00]

1 1 1 1 1 1
MAX MAX_W MED MED_W MIN MIN_W

Predicted Label
Qeexo testing with test datasets collected with Qeexo
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Video Test - NanoEdgeAl

& Number of lines: 0

— Serial output
1050-45-541044-45-541030-38-87 1015-20-116595517-14057076-163 948 143 -176 938198 -171 541 221-146 951 210-108 555 174
-71560116-4196538-23586-42-101005-107-41016-147 -81024-171-18 1027 -185-37 1023 -184 -62 1022 -157 -84 1022 -102 -57 1020
-22-114101975-121 1017 178-101 1012 253 -85 993 278 -81 967 259 -76 945 207 -76 537 142-65 927 75-66 927 4-74 937 -58 -85 952 -102

Emulator function outputs

et | el T At i) P Sl A A Y
23 T [ ISR i O B g &8 O] MDY 20 \

e O e N SN R \ &

1
I J

{

"lib_id": "6324aa8ee710b7132c09f5ad",

"dlass_name”: ['MIN", "MED", "MAX", "MIN_W", "MED_W", "MAX_W"]
}

\
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Video Test - QeeXO

Live TeSting f»  USB - Connected @ READY

HARDWARE CONNECTION

Ann

CLASS LABEL SENSITIVITY WEIGHTS DATE

MAX 9/16/2022 9:17 PM
MAX_W
MED
MED_W
MIN
MIN_W

T

EXPAND ~

(® Continuous Classification

MIN_W
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Summary and Future Work

 Each framework presented was benchmarked by
NANOEDGE Al assessing some of the most important KDIs in Al/ML
STUPIO platforms. It also describes the most relevant

Qee“o factors that might affect the KDls.

=—EDGEIMPULSE ¢ Transforming raw sensor data into actionable
insights is complex, time consuming, and costly,
requiring a systematic engineering approach to
building, deploying, and monitoring ML solutions

* The benchmarking findings indicate that no single Al
framework can outperform all other frameworks
across all KDIs. The frameworks have different
approaches for core tasks, such as model selection,
(hyper)parameter optimisation and deployment,
thus possessing unique capabilities and weaknesses.
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Summary and Future Work

e All frameworks provide relevant results,
and as they evolve and borrow ideas
from each other, they will also gain
more strength and overcome
weaknesses.

* The particularities of verification and
validation when deploying Al at the
edge require at least one
complementary workflow implemented
with another framework.

* Future work is intended to enlarge the
comparison by considering additional
frameworks and KDls.
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The Key Digital Technologies Joint Undertaking - the Public-Private Partnership
for research, development and innovation — funds projects for assuring world-
class expertise in these key enabling technologies, essential for Europe's
competitive leadership in the era of the digital economy. KDT JU is the successor
to the ECSEL JU programme. www.kdt-ju.europa.eu
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European Union’s Horizon 2020 research and innovation programme and
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