International Workshop on Embedded Artificial Intelligence Devices, Systems, and Industrial Applications (EAI)

ECSEL JL

Milan, Italy 19 September 2022

International Workshop on Embedded Artificial Intelligence Devices, Systems, and Industrial Applications (EAI)

Meeting the latency and energy constraints on timing-critical edge-AI systems

Ivan Miro-Panades, Inna Kucher, Vincent Lorrain, Alexandre Valentian

19 September 2022 Milan, Italy

Presentation Outline

- Introduction
- Dual-system approach
- NeuroCorgi overview
 - Low energy
 - Low latency
 - ASIC design
- Conclusions

Introduction

Instructions: Count how many times the players wearing white pass the basketball Source: https://www.youtube.com/watch?v=vJG698U2Mvo

Introduction

Instructions: How many gumdrops is the person eating?

Source: https://www.youtube.com/watch?v=dbjPnXaacAU

Introduction

- Is our "brain AI" efficient?
 - When I count objects, I don't see background images...
 - When I focus my attention, I lost my attention on sudden images...
- Can I trust my "brain AI" to drive a car, a plane?

Performing an image detection for the **full** image is **too power consuming** \Rightarrow Use bio-inspiration to overcome energy and latency constrains

Introduction: Vision system

- See something
 - Where?
- Watch something
 - What?

Where ?

What ?

(Computed in portions of the image)

Dual system approach

•

Where ?

Localize objects

- Medium precision
 False positives accepted
 - Low latency Lower latency => less buffering Batch size = 1
- High energy efficiency Performed on the full image

Detect objects

- High precision Detect with precision the objects
- Latency is less critical
- Medium energy efficiency Performed on small sub-images Adapted to each application

Dual system approach

Copyright © 2022

10

NeuroCorgi overview

- Objective:
 - Low-power low-latency AI accelerator to compute the features of an image to classify and detect objects with a fixed topology and weights
 - HD images of 1280x720pixels at 30 frames per second
 - Preprocessing engine to identify the key points in the image before using a high-end AI engine
- Positioning w.r.t. the State of the Art
 - Best in class energy per inference with HD images < 4mJ/inference (HD images @30FPS)
 - Best in class latency with batch size 1
 < 15ms (HD images @30FPS)
- Planned a tape-out on November 2022
 - GF 22FDX technology
 - Embedded Non-Volatile Memory (NVM)

- Low energy per inference
- Low latency

Low energy per inference – Network architecture

- Select the best tradeoff between network complexity and operations per inference
 - Lower operations => lower MACs per images => lower energy
 - MobileNet v1 uses depth-wise and point-wise convolutions to reduce the computing complexity

Depthwise

- Standard convolution Depth-wise + point-wise convolution
 Leverage on fixed topology and fixed weights
 - Fixed topology optimizes the buffering and the inter-layer communication throughput
 - Fixed weights allows to fix in the ASIC the weight values

S. Bianco, "Benchmark Analysis of Representative Deep Neural Network Architectures,"

latech

Low energy per inference - Quantization

- Quantization for weights and activations
 - Lower the energy per MAC operation
 - Lower the bits for weight and activation storage => less bits means less area and less leakage
 - Leverage on N2D2 framework => Quantization Aware Training

Low latency – streamed architecture

• Streamed network layer architecture

• Network layers are computed in pipelined fashion instead of computing layer-wise the network

- A streamed network layer architecture is normally less energy efficient than a nonpipelined architecture
 - Layer-wise architecture allows to compute multiple images per layer (batch size) => weights are read once and reused for the multiple images => less energy
 - Streamed architecture means different HW elements for each network layer
 - Higher buffering, higher area, higher leakage
 - Not time division multiplexing

- But batch size of 1 is mandatory
 - It is not possible to compute multiple images in parallel
- By fixing the network topology and the weight values it is possible to limit the area overhead of a pipelined architecture

⇒ Streamed architecture offers a good tradeoff between latency and energy efficiency

NeuroCorgi architecture builder

list ceatech

- Automatic RTL generation and bit-accurate CPP model of DNN (ONNX)
- Functional validation of the generated architecture
- Customizable HW parameters (MACs per layer, bit precision, pipelining)
- Fast architecture exploration

NeuroCorgi ASIC

- NeuroCorgi is a IA feature extractor of HD images
- Requires an FPGA to input the image data and to extract the computed features
- High throughput interfaces >3Gbps with parallel data (FIFO_VC)
- Embeds a fully connected layer to classify the input images
- Implemented in three manners (SRAM, NVM, multi-bit NVM) for comparison
- Separate power domains for power/performance analysis

NeuroCorgi ASIC

Тороlоду	MobileNet v1
Image size	1280x720 pixels @30 FPS
Image pixel	24 bits RGB
Weight quantization	4 bits
Activation quantization	4 bits
Inference latency	< 15 ms
ASIC target technology	GF 22FDX
Implementation	Digital
Expected area	~10 mm ²
Package	QFN open cavity
Power domains	PADs, Periphery, Core
Input data link	700 Mbps
Output data link	2500 Mbps
Output data channels	4 layers + classification
Configuration interface	SPI @ 40 MHz
External memory	No
Embedded memory	~ 600 kbytes
Expected efficiency	> 20 TOPS/W
Expected power consumption	< 100 mW
Voltage supply	1.8 V IOs
	0.6 to 0.9 V core

NeuroCorgi Team

Conclusions

- A dual system with where/what is a promising approach to address lowenergy and low-latency systems
- NeuroCorgi leverages on a fixed-topology with fixed weighs to meet the energy and latency requirements
- N2D2 framework is used to train the DNN network with 4bits
- An architecture builder generates an RTL/CPP models
- Expected ASIC results are <4mJ/inference and <15ms latency on HD images at 30FPS

Thank You For your attention

Copyright © 2022