
Copyright © 2022 1

Copyright © 2022

International Workshop on Embedded Artificial Intelligence
Devices, Systems, and Industrial Applications (EAI)

Milan, Ita19 September 2022 Milan, Italy

2Copyright © 2022

Ivan Miro-Panades, Inna Kucher, Vincent Lorrain, Alexandre Valentian

CEA-List

Meeting the latency and energy constraints on
timing-critical edge-AI systems

Copyright © 2022

Presentation Outline

• Introduction
• Dual-system approach
• NeuroCorgi overview

• Low energy
• Low latency
• ASIC design

• Conclusions

3

Copyright © 2022

Introduction

4

Source: https://www.youtube.com/watch?v=vJG698U2Mvo

Instructions: Count how many times the players wearing white
pass the basketball

Copyright © 2022

Introduction

5

Source: https://www.youtube.com/watch?v=dbjPnXaacAU

Instructions: How many gumdrops is the person eating?

Copyright © 2022

Introduction

• Is our “brain AI” efficient?
• When I count objects, I don’t see background images…
• When I focus my attention, I lost my attention on sudden images…

• Can I trust my “brain AI” to drive a car, a plane?

6

Performing an image detection for the full image is too power consuming
 Use bio-inspiration to overcome energy and latency constrains

Copyright © 2022

Introduction: Vision system

• See something
• Where?

• Watch something
• What?

7

Where ? What ?

(Computed in portions of the image)

Copyright © 2022

Dual system approach

8

Localize objects
• Medium precision

False positives accepted
• Low latency

Lower latency => less buffering
Batch size = 1

• High energy efficiency
Performed on the full image

Detect objects
• High precision

Detect with precision the objects
• Latency is less critical
• Medium energy efficiency

Performed on small sub-images
Adapted to each application

Where ? What ?

Copyright © 2022

Dual system approach

9

Where ? What ?NeuroCorgi

Computing & Energy efficiency
TOPS/W

ConfigurabilityArea efficiency
TOPS/W/mm²

~5TOPS/W

~5TOPS/W/mm²

Computing & Energy efficiency
TOPS/W

ConfigurabilityArea efficiency
TOPS/W/mm²

>20TOPS/W

>20TOPS/W/mm²

Copyright © 2022

NeuroCorgi overview

• Objective:
• Low-power low-latency AI accelerator to compute the features of an image to classify and detect objects with a fixed

topology and weights
• HD images of 1280x720pixels at 30 frames per second
• Preprocessing engine to identify the key points in the image before using a high-end AI engine

• Positioning w.r.t. the State of the Art
• Best in class energy per inference with HD images

< 4mJ/inference (HD images @30FPS)

• Best in class latency with batch size 1
< 15ms (HD images @30FPS)

• Planned a tape-out on November 2022
• GF 22FDX technology
• Embedded Non-Volatile Memory (NVM)

10

Better

Architecture survey
September 2021Our target

Copyright © 2022

NeuroCorgi - main pillars

• Low energy per inference

• Low latency

11

Copyright © 2022

Low energy per inference – Network architecture

• Select the best tradeoff between network complexity and
operations per inference
• Lower operations => lower MACs per images => lower energy
• MobileNet v1 uses depth-wise and point-wise convolutions to

reduce the computing complexity

• Leverage on fixed topology and fixed weights
• Fixed topology optimizes the buffering and the inter-layer

communication throughput
• Fixed weights allows to fix in the ASIC the weight values

12

Standard convolution Depth-wise + point-wise convolution

S. Bianco, "Benchmark Analysis of Representative Deep Neural Network Architectures,"

Copyright © 2022

Low energy per inference - Quantization

• Quantization for weights and activations
• Lower the energy per MAC operation
• Lower the bits for weight and activation storage => less bits means less area and less leakage
• Leverage on N2D2 framework => Quantization Aware Training

13

Code cross-
generation

Code execution
on target

COTS
•STM (STM32, ASMP)
•Nvidia (all GPUs)
•Renesas (RCar)
•Kalray (MPPA)

Custom accelerators
•ASIC (PNeuro,
NeucoCorgi)
•FPGA (DNeuro)

Software DNN libraries
•C/OpenMP (+ custom SIMD)
•C++/TensorRT (+ CUDA/CuDNN)
•C++/OpenCL
•C/C++ (+ custom API)
•Assembly

Hardware DNN libraries
•C/HLS
•Custom RTL

Post-training
quantization

2 to 8 bit integers + rescaling
•Based on dataset distribution
•Quantized applicative
performance metrics
validation

Data
conditioning

Learning &

Test

databases

Considered criteria
•Applicative performance
metrics
•Memory requirement
•Computational complexity

Modeling Learning Test

Optimization

Trained
DNN

ONNX model

1 to 8 bit integers + rescaling
•SotA QaT methods (SAT, LSQ)
•Integration of quantization
operators in learning
process.

https://github.com/CEA-LIST/N2D2

Copyright © 2022

Low latency – streamed architecture

• Streamed network layer architecture
• Network layers are computed in pipelined fashion instead of computing layer-wise the network

14

▪ A streamed network layer architecture is normally less energy efficient than a non-
pipelined architecture

▪ Layer-wise architecture allows to compute multiple images per layer (batch size) =>
weights are read once and reused for the multiple images => less energy

▪ Streamed architecture means different HW elements for each network layer
• Higher buffering, higher area, higher leakage
• Not time division multiplexing

▪ But batch size of 1 is mandatory
▪ It is not possible to compute multiple images in parallel

▪ By fixing the network topology and the weight values it is possible to limit the area
overhead of a pipelined architecture

 Streamed architecture offers a good tradeoff between latency and energy efficiency

Copyright © 2022

NeuroCorgi architecture builder

• Automatic RTL generation and bit-accurate CPP model of DNN (ONNX)
• Functional validation of the generated architecture
• Customizable HW parameters (MACs per layer, bit precision, pipelining)
• Fast architecture exploration

15

HW optimization
(export NeuroCorgi)

RTL generation
Template

HDL
databases

RTL
simulation

CPP bit accurate
models

Test

Considered criteria
• Pipeline balancing
• Memory available
• Computational available

Material
description

Application score
validation …

Functional
validation

CorgiBuns

Trained
DNN

Copyright © 2022

NeuroCorgi ASIC

• NeuroCorgi is a IA feature extractor of HD images
• Requires an FPGA to input the image data and to extract the computed features
• High throughput interfaces >3Gbps with parallel data (FIFO_VC)
• Embeds a fully connected layer to classify the input images
• Implemented in three manners (SRAM, NVM, multi-bit NVM) for comparison
• Separate power domains for power/performance analysis

16

FPGA

NeuroCorgi

core
(MobileNet v1)

SPI_slave

700Mbps FIFO_VC

VDD_DNN

<2.5Gbps

Conv3

1x1

Conv5

1x1

Conv7_5

1x1
FIFO_VC

NeuroCorgi

Conv9

1x1

VDD_FC1

VDD_FC2

VDD_FC3

VDD_interface

FC

SRAM

FC

RRAM

FC

multi-bit RRAM

Copyright © 2022

NeuroCorgi ASIC

17

Topology MobileNet v1

Image size 1280x720 pixels @30 FPS

Image pixel 24 bits RGB

Weight quantization 4 bits

Activation quantization 4 bits

Inference latency < 15 ms

ASIC target technology GF 22FDX

Implementation Digital
Expected area ~10 mm2

Package QFN open cavity

Power domains PADs, Periphery, Core

Input data link 700 Mbps
Output data link 2500 Mbps

Output data channels 4 layers + classification

Configuration interface SPI @ 40 MHz

External memory No
Embedded memory ~ 600 kbytes
Expected efficiency > 20 TOPS/W

Expected power consumption < 100 mW

Voltage supply
1.8 V IOs
0.6 to 0.9 V core

NeuroCorgi

core
(MobileNet v1)

SPI_slave

700Mbps FIFO_VC

VDD_DNN

<2.5Gbps

Conv3

1x1

Conv5

1x1

Conv7_5

1x1
FIFO_VC

NeuroCorgi

Conv9

1x1

VDD_FC1

VDD_FC2

VDD_FC3

VDD_interface

FC

SRAM

FC

RRAM

FC

multi-bit RRAM

Copyright © 2022

NeuroCorgi Team

18

Tools

Physical
implementation

Applications

Design

Copyright © 2022

Conclusions

• A dual system with where/what is a promising approach to address low-
energy and low-latency systems

• NeuroCorgi leverages on a fixed-topology with fixed weighs to meet the
energy and latency requirements

• N2D2 framework is used to train the DNN network with 4bits
• An architecture builder generates an RTL/CPP models
• Expected ASIC results are <4mJ/inference and <15ms latency on HD images

at 30FPS

19

Copyright © 2022

ivan.miro-panades@cea.fr

For your attention

Copyright © 2022

