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Introduction

analog synapse

* Bring neural networks to edge

devices requires b _'% —”:T_/W\/\ _'ELVW\(%

* High energy efficiency
* Low area

* Analog DNN accelerator a
promising option but
* Accurate calculations and

* Robustness against
PVT variations are challenging
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D N N TO p - Level Digital Control

Weight Loading Interface

Digital Signal

SPI —) Distribution

Digital Input Data
SPI gew |

e Digital control

— : % 7
e Communication via SPI fogiia] - poais]
50x
 DNN timing with FSMs ’;AC y;;
o READY « Sj . Sj
Frontend
* Digital-to-analog conversion SN " Fonend ot ]| gt
[ FE-FSM

* Driver stage for resistive DNN load o

e 3| dayer DNN IXLFSM  [ooetomey P];Eﬁ:g ::% @

] ] 3 layers T_est
* SRAM based synaptic weight storage : Multiplexer
* Fully connected Aralog Copu Dt !
. = Analog

Capture Stage
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— Capture
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* Capture stage v - o

* Analog-to-digital conversion |
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Synapse Circuit: State-of-the-Art

 Variable resistors to implement the

weights
g Input 1 Q—%
e \VV-| conversion R1

. I Out
Ogtpu’i node rdnust be constant nput 2 o u
(virtual ground) . f> ' R2 Output

* Transimpedance amplifier ®
e

e Shunt resistor
Input N
RN
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Synapse Circuit: Voltage Divider Approach

* Constant output resistance mpllto—rw

* No virtual ground required .__OQSI R]

S2 R2
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Input O — — —O
— Average operation R1 | R2 | [Output
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-> Gain required Ou
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Neuron Circuit

e Batch normalization circuit Batch Normalization = Sampling Activation
: Circuit Stage Function
* Programmable gain A o s
* Offset addition ' % ! '
i a
* Sampling stage . Programmable
. Gain Amplifier

* Non-linear activation
function

InN >———
\ Out

InP D—
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Neuron Circuit — Activation Function

* Rectified Linear Unit Vad
. . r Vv
* Operational Amplifier g od>
! |
. Folded Cascode Preamp
e Qutput range limited . s M3g o rout
.. InND—— M4
* Upper limit: Supply Voltage ] C Limiter T
 Lower limit: Limiter InPD—* M2 Ref
o4 X Vs
VSS
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Simulation Results

V out / mV
* Output range
e Lower limit: 200 mv ~ *% i ///
e Upper limit: 400 mV /
* Minor deviations due 300 - -
PVT variations //
e [T [T —————————————" [T |
100 0 100 200 300
V out target / mV
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Simulation Resulis

Parameter Value T Vout / mV

300 -
Average 1.9 mV ol | | Liyer ]
Deviation 100 1 f Pipeline

: | ¢ ' Layer 1 -> Layer 2

Maximum 6.9 mV 1o | Vout/mv LT
Deviation 3 Layer 2

200 4 N\
Energy/ 9 nJ _
Inference o1 o

{ Vout/ mV Pipeline -
Latency S5 US 400 | Layer 2 -> Layer3 Layer 3
Power 276 GOPS/W 200 1 |
Efficiency 0 | | | ‘
7312 7320 7328  733.6 7344 7352 7360 t/us
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Discussions and Conclusions

e Accurate DNN computations even with PVT variations due to synaptic circuit
based on a voltage divider approach and robust neuron circuit

* Proof-of-concept simulation results show
* Functionality of the in-memory computation approach
* Low energy consumption
* Low latency

 Test strategy with test patterns for functional verification, evaluation and KPI
measurement has been developed

* Evaluation and verification through measurement still pending
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