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Introduction 
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Energy Efficient DNNs are the next generation of 
Artificial Intelligence!
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Problem Description
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Each computation requires, 
• Memory Read – Weights,  Activations and 

Partial Sums
• Memory Write – Updated Partial Sums

Basic memory 
hierarchy

Memory access is the bottleneck. Image source - Eyeriss
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https://ieeexplore.ieee.org/document/7551407


Brain-Inspired Solution
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• Human brain achieves impressive accuracy and speed with very little power 
consumption.

• Brain uses spatio-temporal redundancy or sparsity available in the natural input to 
accomplish this.

• Brain relies on change based processing rather than frame-based processing.

Image source: Parallelizing-H.264-Motion-Estimation-Algorithm
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https://www.semanticscholar.org/paper/Parallelizing-H.264-Motion-Estimation-Algorithm-Chan-Lee/bd6abf154afbc9b5f868c480600cdd056ae65f62


Exploiting Sparsity for Energy Efficient DNN

• DNN inference – dominated by multiplication between weight matrix and 
activation vector.

• Sparse data can be compressed.

• Y x 0 = 0
• Y + 0 = Y
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Can save space and energy by 
avoiding manipulation of zero 
values

Can save time and energy by 
avoiding fetching unnecessary 
operands and avoiding 
computations
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Sparsity in DNN

• Structural sparsity
• Lottery-ticket hypothesis

• Spatial sparsity
• Most pixels in a frame have no relevant feature
• Results in zero-valued activations

• Temporal sparsity
• Little change going from frame to frame 
• Wasteful to re-process the whole frame 

7

Image source : Pruning, ReLU and GrAI matter
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https://arxiv.org/pdf/1506.02626.pdf
https://en.wikipedia.org/wiki/Rectifier_%28neural_networks%29
https://www.eetimes.com/grai-matter-raises-14m-for-sparsity-driven-ai-soc/


Temporal Sparsity – Related Work

8

• Change-based inference 
of CNNs for video 
exploiting the spatio-
temporal sparsity of 
pixel changes.

• Only change maps are 
propagated forward 
instead of entire frames.

• Trained and tested on 
static camera inputs. 

• ! Change detection is 
based on thresholds, 
which are fixed offline.

“CBInfer: Change-Based Inference for 
Convolutional Neural Networks on Video Data”
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https://arxiv.org/abs/1704.04313


Research Goals

• To induce sufficiently high temporal activation sparsity without suffering too 
much accuracy loss.

• To make the method flexible enough to be integrated with existing 
architectures.

• To study the potential of spatial sparsification methods in facilitating the 
induction of temporal sparsity.
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Proposed Approach : Temporal Delta Layer

• The layer consists of 3 main components,

• Delta Inference
• Activation Quantization
• Sparsity Penalty
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Delta Inference
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Standard DNN layer

W – Weights
Xt – Input activation at time t
B – Bias
Yt – Transitional state at time t
σ - Non-linear activation
Zt – Output activation at time t

Proposed layer

• As input is temporally redundant, ∆Xt is temporally sparse, 
and by association, so is ∆Zt 

• Temporal sparsity between feature maps is cast onto the 
spatial sparsity of delta map which is propagated forward.
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Activation Quantization – Why?
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• A lot of near zero values in the 
delta map!

• Solution: Reduce precision!
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Activation Quantization

13

• Two methods are considered:

 Fixed point quantization
 Learnable step size quantization
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Fixed Point Quantization
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• Floating point – IEEE 754

• For fixed point representation, Given BW – Bitwidth, x – Input Activation and S – Sign 
bit = 1, Integer bits is,   

• Fractional bits = BW – Sign bit – Integer bits
• Uniform Quantization:

• R (.) – Round function, (-t, t) is the range for the given bitwidth and C(.) – Clipping 
function
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Learnable Step Size Quantization
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x – input activation to be quantized
s – step size, that is learnable

• Smaller s, more number of quantization 
levels → Larger bitwidth

• Larger s, less number of quantization 
levels → Smaller bitwidth

Forward

Backward

Copyright © 2022.



Sparsity Penalty
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• As the number of trials or learning increases, the number of neurons required for inference 
decreases.

• Optimizing the new layer to decrease the activation density as a part of the overall objective.

Minimizes the prediction 
error Minimizes the activation 

density within delta map
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Proposed Algorithms

1. Temporal delta layer + sparsity penalty + fixed point quantization

2. Temporal delta layer + sparsity penalty + learnable step size quantization
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Experimental Setup

• Application :  Human action recognition

• Dataset used : UCF101

• Model architecture : 2 stream network
• Spatial stream – RGB frames
• Temporal stream – Absolute difference of 

RGB frames

• Both streams uses ResNet50 
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https://www.crcv.ucf.edu/data/UCF101.php


Baseline – Two Stream Network
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Single RGB frame
(224, 224, 3)

Val accuracy – 75%

Stack of Absolute 
Diff of RGB frames

(224, 224, 10x3)
Val accuracy – 70%

Average Fusion
Val accuracy –

82%

Spatial Stream 

Temporal 
Stream 
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Accuracy v/s Activation Sparsity
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Two Stream Network with Temporal Delta Layer
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Single RGB frame
(224, 224, 3)

Val accuracy – 69%
Activation sparsity –

86%

Stack of Absolute Diff 
of RGB frames
(224, 224, 30)

Val accuracy – 65%
Activation sparsity –

89%

Average Fusion
Val accuracy – 77%
Activation sparsity–

88%

Spatial Stream 

Temporal 
Stream 
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Conclusion

• The proposed method (temporal delta layer with LSQ) resulted in 88% activation 
sparsity with an accuracy drop of 5% on UCF-101 dataset for human action 
recognition.

• The proposed layer can be deployed after any activation layer, and its incorporation 
does not require any adjustment to the preceding or following layer.

• As the quantization step-size is learnable in LSQ, similar to weights, the initialization 
of step-size is important and is found heuristically in this work which can be an 
“annoyance".

• The drawback of using temporal delta layer derives from its requirement to keep 
track of the previous activations to perform delta operations, so there is memory 
overhead.
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Event Organisers
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(JU) under grant agreement No 826655. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and
Belgium, France, Germany, The Netherlands, Switzerland. www.tempo-ecsel.eu

The AI4DI project has received funding from the ECSEL Joint Undertaking (JU)
under grant agreement No 826060. The JU receives support from the European
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