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Introduction
• Apply AI-enabled methods to edge devices used for motors/equipment real-

time conditions monitoring in industrial processes.
• Consider the edge processing continuum including the sensing, processing and

communication devices (micro-edge) close to the physical industrial devices,
the gateways, intelligent controllers processing devices (deep-edge), and the
on-premise multi-use computing devices (meta-edge).

• Investigate different approaches to using ML and DL technologies to bring AI
capabilities to micro-edge devices and apply these capabilities for classification
to a PdM use case in industrial applications.

• Illustrate how to optimise ML and DL models for resource-constrained micro-
edge-embedded devices using different end-to-end AI-based workflows.
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Intelligent Edge Processing Real-time Maintenance Systems
• PdM applies extensive set of input data and analysis to provide a more reliable

indicator of the overall health and condition of the motors and an accurate
prediction of possible failures and what actions to be considered to prevent it.

• Critical measurements motors: three-axis vibration, temperature, current, etc.
• Various components conditions and operations are possible causes that can

generate anomalous behaviour, defining various normal/abnormal states
(classes).

• Focus on AI-based PdM approaches, which learn from historical and real-time
data employing ML and DL models implemented using micro-edge-embedded
devices.

5Copyright © 2022.



ML and DL for Embedded Edge Predictive Maintenance

• Three different workflows have been
implemented to match the PdM
application requirements for generating
embedded code and performing learning
and inference engine optimisations.

• Three existing frameworks and inference
engines for integrating AI mechanisms
within MCUs have been employed:

• NanoEdgeTM AI (NEAI) Studio,
• Edge Impulse (EI) and
• STM32 Cube.AI
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Approaches, Frameworks for Integrating AI Mechanisms 
• The workflows offer various degrees of:

• Automation of various parts of the E2E
workflow,

• Transparency into the ML/DL algorithms and
model architecture, and

• Control over model parameters and hyper
parameters

• Therefore, difficult to compare
performances. Rather, the aim has been to
gain (and present) quantitative and
qualitative insights in these
complementary workflows with different
design and learning components.
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Architecture of the Experimental Results
• The micro-edge IIoT device used for the experiments comprises of:
• A three-axis ultrawide bandwidth (DC to 6 kHz) acceleration sensor

(ISM330DHCX), with a 12-bit analog-to-digital converter, a user-configurable
digital filter chain, a temperature sensor, and a serial peripheral interface.

• The micro electro mechanical systems (MEMS) vibration sensor has a
selectable sensitivity (±2, ±4, ±8, or ±16 g)
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• Processing capabilities ensured by an Arm
Cortex-M4 processor (120 MHz, 640 KB
RAM, 2 MB Flash).

• The micro-edge device can be powered
externally or by an internal lithium-ion
battery

• BLE and Wi-Fi connectivity.
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Approaches, Frameworks for Integrating AI Mechanisms 
• Micro-edge AI processing flow
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Classification Task  - Design of the Use Case
• Classification of the state of a motor based on vibration measurements
• A built-in three-axis accelerometer (ISM330DHCX) measures the accelerations of

three orthogonal directions
• Classes defined based on conditions (motor speeds) and sub-conditions

(malfunctions):
• A. MOTOR_OFF: just record signals when nothing is happening
• B. MOTOR_ON_NORMAL_50: the motor is running at 50% of the maximum speed
• C. MOTOR_ON_NORMAL_75: the motor is running at 75% of the maximum speed
• D. MOTOR_ON_NORMAL_75_B: the motor fan produces additional trepidations to the motor,

while the motor is running at 75% of the maximum speed
• E. MOTOR_ON_NORMAL_MAX: motor is running at maximum speed

• The use case was design with the following goals in mind:
• The motor behaviour and the classification problem being solved with ML/DL were studied in-

depth
• Classes should be distinguishable for easier classification
• Data sets should be class-balanced
• Data sets should be properly split (training, validation, test)
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Signal Data Acquisitions
• AI platforms usually offer several ways within their GUIs to acquire signals,

either from files or directly from the sensors (provided the IIoT device is
supported).

• In the experimental use case, a simple logger application (in C) reads and logs
the raw accelerometer sensor data directly on the serial port, so that logs can
be retrieved from a computer using serial tools such as Tera Term, from the
console of the IDE, and AI platform (NEAI).

• Acquisition parameters for each class:
• Sampling frequency 1667 Hz,
• Collection of signals (of approx. 30 seconds),
• Buffer size of 512 samples on each axis, in total 1536 values per signal,
• Each buffer is a snapshot of approximately 300 milliseconds (= 512/1667) of the

accelerometer temporal vibration data
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Signal Data Acquisitions
• Visualisation of two selected classes signals (75 and 75B) in both temporal and

frequency domain with NEAI:
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Data sets - the collection of signals for each class
was split as shown in figure: (60% training, 20%
validation and 20% test):
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Exploring and visualising features
• Pre-classification phase:

• Calculate and visualise feature
importance, indicating how important
the features are for each class

• Employ dimension reduction
algorithms to reduce the computing
burden of ML algorithms (deleting the
less important or redundant
information from the data)

• Root Mean Square (RMS) and peak
values of vibration along the three-
axis proved to be the most important
features in determining the class
(shown by EI and Python)

• AI frameworks may select different
features

13

Additional feature: 
Auto-correlation

Reference: https://www.frontiersin.org/articles/10.3389/fceng.2022.900096/full  
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Auto-correlation
• Correlation (when two independent

variables are linearly related) vs ACF (when
a time series is linearly related to a lagged
version of itself).

• From looking at the Xacc, Yacc, Zacc plots,
it’s not obviously apparent whether or not
the data will have any auto-correlation.

• Auto-correlation (ACF) useful to:
• Uncover patterns in data,
• Select the best prediction model,
• Evaluate the effectiveness of the model.
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ACF for the M_75 class

ACF for the M_75F class
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Feature Exploration and Visualisation (EI)
• 33 features (11 per each axis) are generated in total for the

input signal.
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The features are visually clustered - good
indication that the model can be trained to
perform the classification.

Classes are not very distinguishable. Displaying feature importance useful for
dimension reduction.
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Benchmarking
• Benchmarking allows to compare the

performance of different model
architectures within the same framework

• Confusion Matrix of the validation data – is
a useful evaluation tool
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Benchmarking with NEAI. Confusion matrix and data explorer.
All correctly classified (green dots)

Benchmarking with EI. Confusion matrix and data explorer
based on training set: correctly classified (green dots) and
misclassified (red dots).
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Testing
• Evaluation of the trained model on the testing

dataset to analyse how well the model
performs against unseen data.

• Both NEAI and EI platforms provide a
microcontroller emulator to test and debug
the generated model prior to its deployment
on the device

• An advantage of live streaming during testing
is that it ensures unbiased evaluation of
model effectiveness (completely new signals,
not seen before)

• The confusion matrix in the images show that
the classifier manages to properly reproduce
and detect all classes with reasonable
certainty percentages, and these are
comparable (NEAI vs EI).
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Evaluation of trained model using NEAI Emulator with live
streaming (with Arm® Cortex®-M4 MCU STM32L4R9)

EI model testing with test datasets (Arm® Cortex®-M4 MCU
STM32L4R9 not yet supported)
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Deployment and Inference
• Model deployment is dependent on the

hardware/software platform and in essence
comprises three steps:

1. Format conversion of the fully trained model,
2. Weight/model compression to reduce the amount of 

memory to store the weights in the target hardware 
platform, 

3. Compiling the model and generating the code to be 
integrated with the MCUs firmware

• The back-end flow - wrap an STM32CubeIDE
project with the generated files from the
deployed models, adding functionality on top
such as retrieving the accelerometer values to be
fed to the classification function and displaying
the result, then compile, build, and flash onto the
MCU target.

• Inference classification - running directly from the
target hardware platform on the micro-edge IIoT
devices, producing classification in real-time
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Example of live classification streaming with detected state
and confidence. Tera Term interacting with STWIN IIoT
device (Arm® Cortex®-M4 MCU STM32L4R9)
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Summary
• Embedding trained models into the firmware code enables AI/ML capabilities

of intelligent edge devices.
• Three different workflows have been implemented to match the PdM

application requirements for generating embedded code and performing
learning and inference engine optimisations using:

• NanoEdge™ AI Studio
• Edge Impulse
• STM32 Cube.AI

• Various scenarios have been explored allowing to evaluate trade-offs between
computational cost and performance on actual classification task (state of a
motor based on vibration measurements measured by a built-in three-axis
accelerometer).

• The results have been used to lay down the foundation of the PdM strategy
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Discussions and Future Work
• Findings

• ML and NNs can be efficiently deployed on resource-constrained devices, which enable
cost-efficient deployment, widespread availability, and the preservation of sensitive data
in PdM applications.

• However, the trade-offs associated with optimisation methods, software frameworks
and hardware architecture on performance metrics, such as inference latency and
energy consumption, are yet to be studied and researched in depth.

• Future work
• Investigate more complex PdM systems using various AI-based techniques.
• Enlarge comparison and benchmarking by considering more edge ML and DL

technologies, workflows, and datasets.
• Aim toward a more generic and complete PdM strategy by including insights from other

applications, such as anomaly detection, regression, and forecasting.
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Event Organisers
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(JU) under grant agreement No 826655. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and
Belgium, France, Germany, The Netherlands, Switzerland. www.tempo-ecsel.eu

The AI4DI project has received funding from the ECSEL Joint Undertaking (JU)
under grant agreement No 826060. The JU receives support from the European
Union’s Horizon 2020 research and innovation programme and the national
authorities. www.ai4di.eu
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