The International Workshop on Edge Artificial Intelligence for Industrial Applications (EAI4IA)

ANDANT

ECSEL JU

TEMPO

Vienna, Austria 25-26 July 2022 The International Workshop on Edge Artificial Intelligence for Industrial Applications (EAI4IA)

Feasibility of wafer exchange for European Edge Al pilot lines

Annika Wandesleben, Fraunhofer IPMS CNT, Germany

A. WandeslebenV. BrackmannB. Lilienthal-UhligB. Hintze

AI ECSEL JU

F. Hochschul

FhG

M. Jaysnkar

I. Madarevic

A. Spessot

S. Beckx

D. Truffier-Boutry A. Demarest

Y. Le Tiec

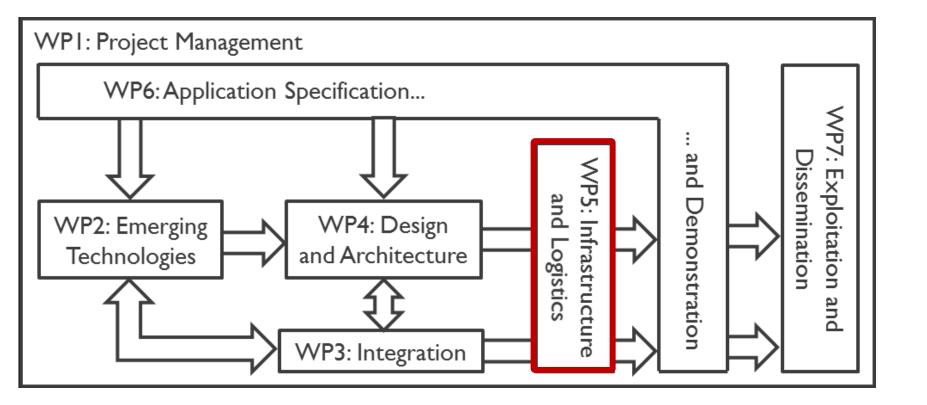
F. Nemouchi

leti

Ceatech

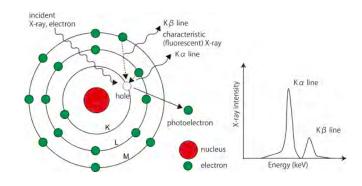
Vienna, Austria 25-26 July 2022

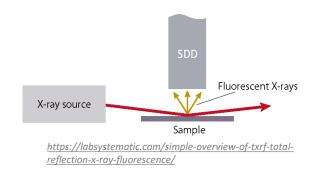
Presentation Outline


Introduction

- Metallic contamination analysis
- Wafer exchange
- Experimental Results
- Conclusion and Outlook

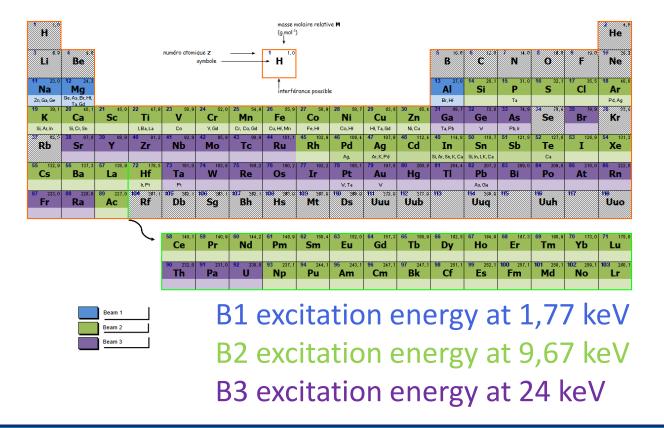
Introduction


Technology alignment and roadmapping→ Wafer exchange

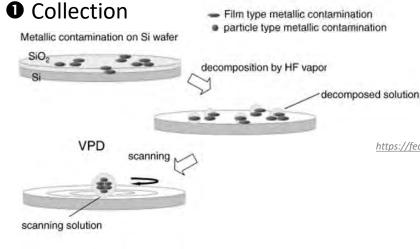

TXRF (Total reflection X-ray fluorescence spectroscopy)

Electron-matter interaction

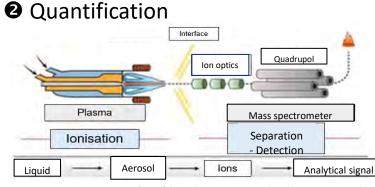
https://www.sciencedirect.com/science/article/pii/S1882761614000258


Total reflection: Very low penetration <10nm

Three different beams to be able to measure as many elements as possible

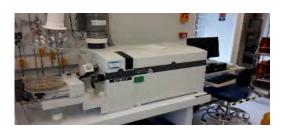


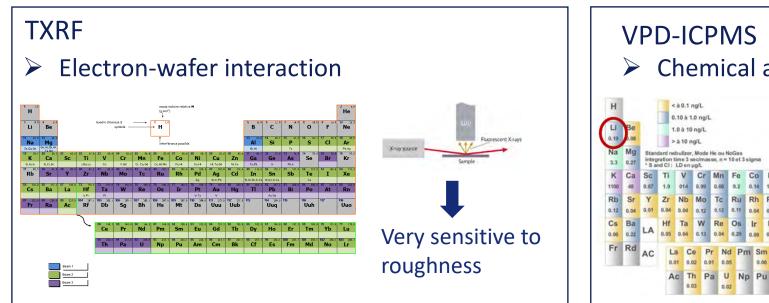
At Leti TXRFV310A



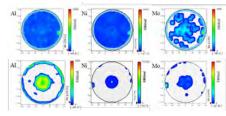
VPD (vapour phase decomposition) - ICPMS

Chemical analysis

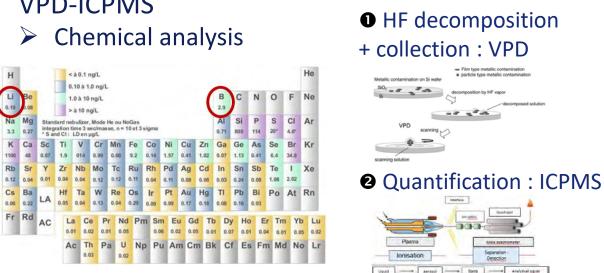

https://www.vpdintegrationservice.com/vpd-in-brief



https://fed-chimiebalard.cnrs.fr/IMG/pdf/M_Tillard.pdf



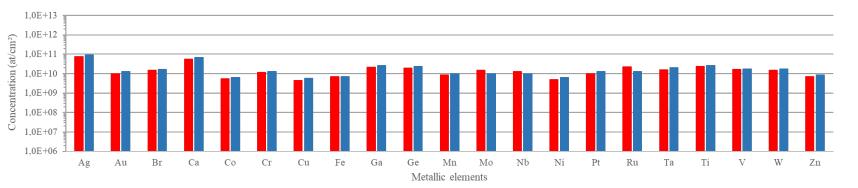
н				<à	0.1 r	g/L																F	le
-				0.10) à 1.	0 ng	g/L								-	-	_		_				
LI	Be			1.0	à 10	ng/	L								1	в	0	2	N	0	F	N	le
0.19	0.08			> à	10 n	9/L									L	2.9	/					L	
Na	Mg			rd nebulizer, Mode He ou NoGas AI Si P S CI								1	Ar										
3,3	0.27			n tim			135 50,	n=1	0 et 3	sigma	1					0.71	80	00	114	20* 4.6*			
К	Ca	Sc	T		V	C	r N	In	Fe	Co	D	Ni	Cu	Z	n	Ga	G	e	As	Se	Br	P	٢r
1100	48	0.67	1.5		14	0,9	9 0	.06	9.2	0.14	1	.57 0	1.41	1,	02	0.07	1.1	13	2.41	6.4	34.8	6	
Rb	Sr	Y	Z	1	Nb	M	0 1	Гс	Ru	Rh	F	d /	Ag	C	d	In	S	n	Sb	Те	1)	(e
0.12	0.04	0.01	0.0	4 0	.04	0.1	2 0	.12	0.11	0.04	0	.11 0	0.08	0.	08	0.03	0.3	24 1	0.08	1.08	2.02	t i	
Cs	Ba		H	f T	Га	W	/ F	Re	Os	Ir	1	Pt /	Au	H	lg	TI	P	b	Bi	Po	At	R	Rn
0.06	0.22	LA	0.0	5 0	.04	0.1	3 0	.04	0.29	0.09	0		1.17	0.	18	0.08	0.	16	0.03				
Fr	Rd			La	C		Pr	Nd	D.	m S	m	Eu	G	d	Tb			Но	E	Tr		ŕb	Lu
		AC		0.01	0.0	8	0.01	0.05			.06	0.02	0.0		0.01			0.01	0.0			.05	0.02
	_				_		_	-				-											-
				Ac	T) 0.0		Pa	U 0.02	N	p P	u	Am	C	m	Bk	0	f	Es	Fn	1 M	an	No	Lr


Lithium and Boron detected.
 For noble metals, a different scanning solution is used
 Standard Method: HF / H₂O₂
 Noble Elements: HF / Aqua regia

- Analysis of standards and nobles elements easily
- LLDs between E+9 et E+11 at/cm²
- Possibility to localize the metallic contamination

Problems of interferences between elements

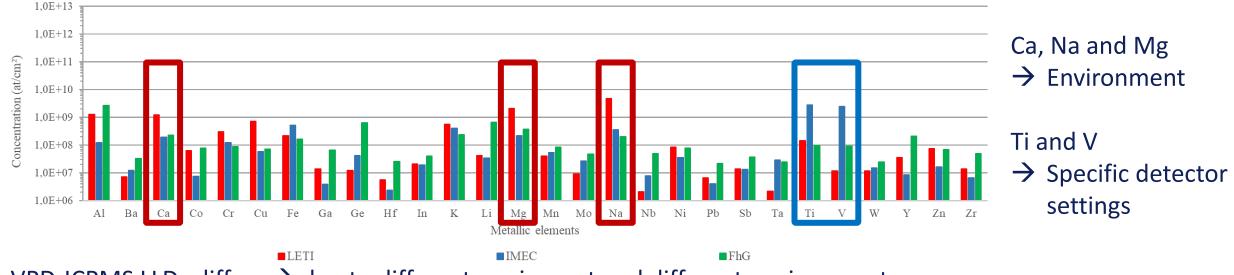
- Campains for noble elements due to the use of different chemical solutions
- LLDs lower, between E+6 and E+11 at/cm²
 - Used when lower LLDs are needed and when interferences with TXRF
- No localization of the metallic contaminants
- Possibility to analyse the entire bevel (FS, bevel, BS)


Technical analysis for metallic contamination available at Leti-imec-FhG

Technics	LETI	IMEC	FhG
VPD-ICPMS	Wafer surface analysisBack sideFront sideBevel	Wafer surface analysisBack sideFront sideBevel	 Wafer surface analysis Back side Front side Bevel under development
TXRF	Wafer surface analysisBack sideFront sideBevel/Edge	Wafer surface analysisBack sideFront sideEdge	For wafer fragments and not yet available, under development

For regular contamination checks :

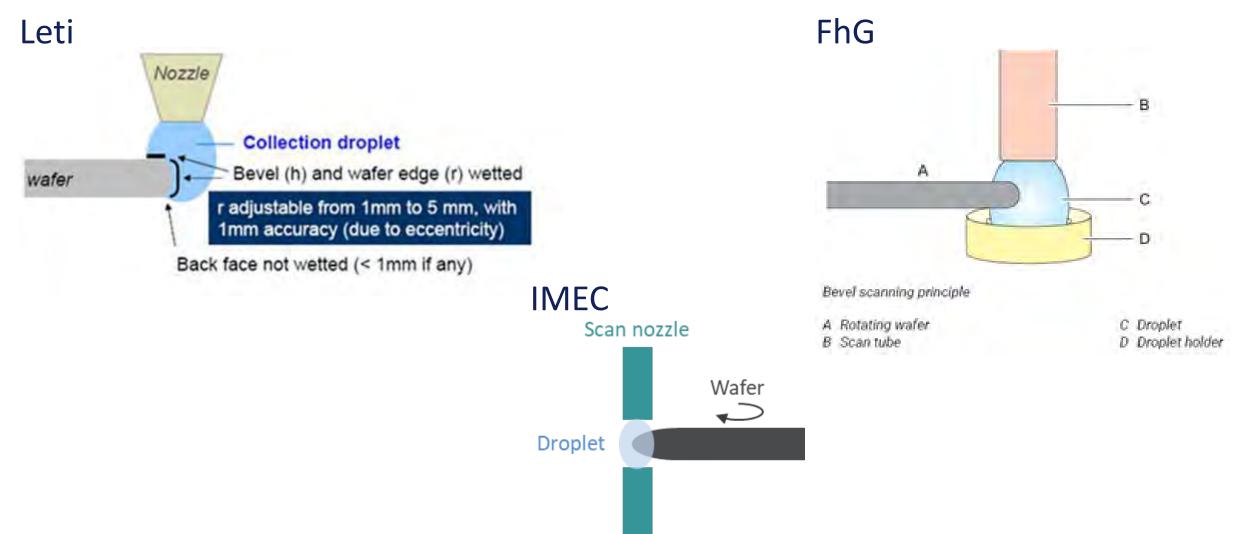
TXRF at Leti and imec, and VPD for increased sensibility on certain elements
 VPD-ICPMS at FhG


TEMPO Consortium proprietary & confidential. No copying or distribution permitted

LLDs TXRF CEA LETI / IMEC

TXRF LLDs of CEA Leti and imec are nearly the same \rightarrow good agreement between both institutes

LLDs VPD-ICPMS CEA LETI / IMEC / FhG



VPD-ICPMS LLDs differs \rightarrow due to different equipment and different environment

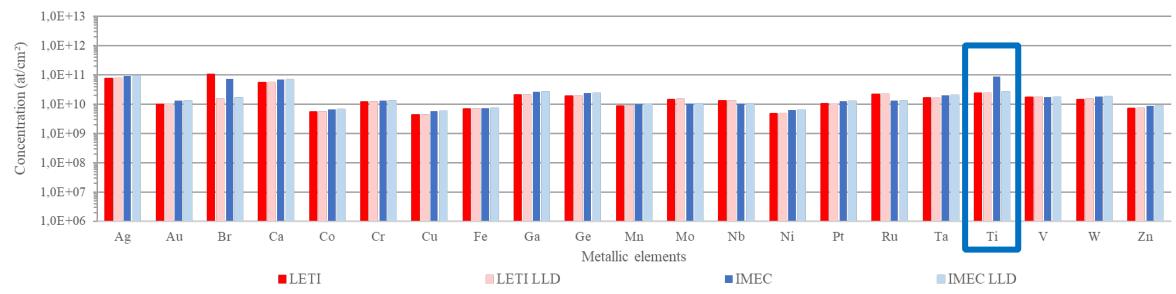
TEMPO Consortium proprietary & confidential. No copying or distribution permitted

Aligned Data	LETI	IMEC	FhG IPMS CNT			
Determination of LLD (VPD-ICPMS)	LLD VPD-ICPMS = 3xSigma for each elements	Calculated from 3xstandard deviation of calibration blank and slope of calibration curve.	For complete process VPD- ICPMS permanent blank method.			
VPD Brand and type	Rigaku VPD300A, stand alone	IAS ExpertTM VPD system	External source: no data CNT: TePla System stand alone			
ICP-MS brand and type	Agilent 8800, three quadrupoles	Perkin-Elmer Nexion™ ICP-MS	External source: no data CNT: Thermo Fischer RQ, single quadrupole			
Exclusion size VPD	7 mm	1 mm	External source: no data CNT: 5 mm (planned)			

VPD Bevel analysis

TEMPO Consortium proprietary & confidential. No copying or distribution permitted

Wafer exchange

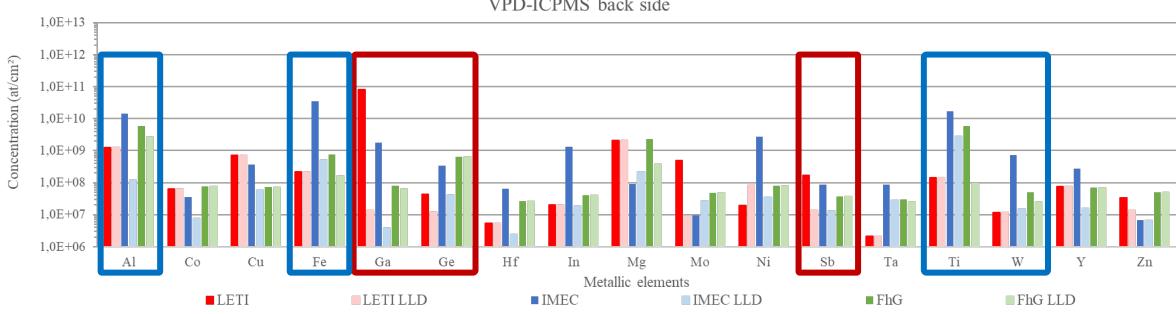

Wafer exchanges protocols or "line of defense" to secure exchanges at CEA-Leti, imec, FhG:

Contamination analysis on witness wafers to check contamination levels of tools

	Tool owner	Type of tool	Date of Wafer	Wafer analysis		
Comparison with specs	CEA-Leti	Ellipsometer	19.04.2020 to FhG 19.04.2020 to imec	31.07.2021 at imec 19.04.2021 at Leti 14.06.2021 at FhG		
	IMEC	Inspection	17.03.2021 to Leti 17.03.2021 to FhG	29.04.2021 at imec 13.04.2021 at Leti 14.06.2021 at FhG 17.09.2020 at FhG 01.02.2021 at imec 25.02.2021 at LETI		
	FhG CNT	Deposition	15.09.2020 to Leti 21.09.2020 to imec			

Experimental Results

Results for imec tool

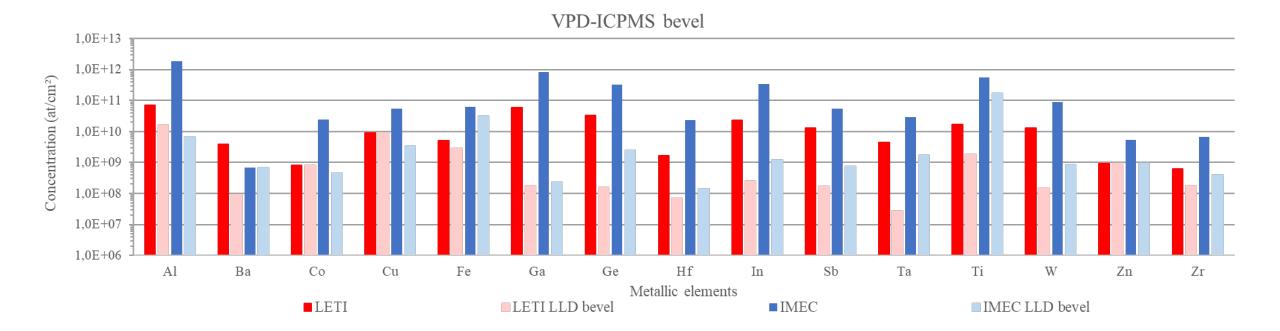


TXRF back side

- High agreement between the values
- Ti (imec) is assumed to be a handling contamination

Experimental Results

Results for imec tool


VPD-ICPMS back side

- More elements are detected due to the lower LLDs
- The three analysed wafers have not the same contamination

 \rightarrow The process do not allow to contaminate each wafer at the same concentration

Experimental Results

Results for imec tool

Contamination levels on the bevel are higher than those measured on the surface

Conclusion

- >Analysis of metal contamination with comparable LLDs
- >The handling in one tool can not produce identically contaminated wafers
- First step for easier wafer exchange accomplished (first experiences and strengthening of cooperation)
- >Important milestone in the alignment of the three research institutes has been reached

Outlook

Next step an interlaboratory test with intentionally standardised contaminated wafers

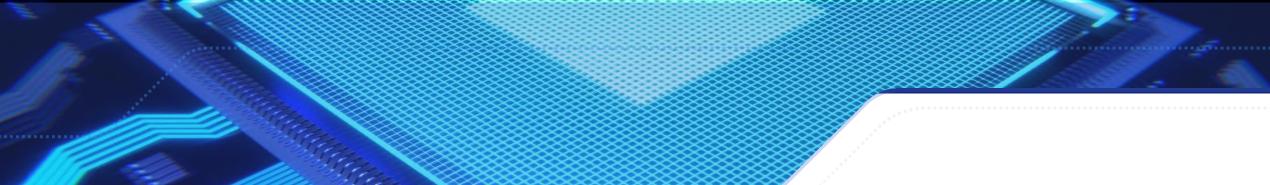
> Develop techniques to analyse the metallic contamination on real wafers during the flow

Event Organisers

authorities. www.ai4di.eu

to the ECSEL JU programme. <u>www.kdt-ju.europa.eu</u> The AI4DI project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826060. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the national

competitive leadership in the era of the digital economy. KDT JU is the successor


The Key Digital Technologies Joint Undertaking - the Public-Private Partnership for research, development and innovation – funds projects for assuring worldclass expertise in these key enabling technologies, essential for Europe's

The TEMPO project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826655. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Belgium, France, Germany, The Netherlands, Switzerland. <u>www.tempo-ecsel.eu</u>

The ANDANTE project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 876925. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Belgium, France, Germany, The Netherlands, Portugal, Spain, Switzerland. <u>www.andante-ai.eu</u>

Thank You For your attention

📿 annika.franziska.wandesleben@ipms.fraunhofer.de