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Publishable Summary 
While DNNs are compute intensive they especially benefit in embedded systems from dedicated 
accelerators and model compression approaches. Reducing the complexity of computations using fixed 
point arithmetic is one of the key parts to achieve a small form factor and reasonable power 
consumption for these accelerators. However, fixed point arithmetic has to address its own challenges 
like numerical resolution, overflow and saturation handling. Another key part is to reduce the huge 
amount of network-parameters to efficiently use chip internal memory and to reduce external memory 
access. Here, compression techniques come into play.  

  

Therefore, this deliverable first provides an overview regarding the topic of quantization and training, 
that makes possible to build flexible synapsis and activation functions. Bosch focuses here on the 
transition of pre-trained DNNs from Float32 to fixed-point variants. Here, various quantization strategies 
are evaluated and elimination of using standard multiplication is investigated to further reduce die size 
and power consumption of the computation. In addition, videantis describes their approach to take a 
trained floating-point (32fp) model of a complete DNN as input, perform an analysis step with 
representative input data, and quantize weights and activations per each layer to either 16 bit or 8 bit 
fixed point resolution, depending on given accuracy requirements. Fraunhofer IIS is on the one hand 
concentrating on different compression methods to reduce the external memory access and on the 
other hand on quantization-aware training using a custom activation function for an analog accelerator. 
In this context Fraunhofer EMFT also presents their results for 1 bit quantization.  

  

The work on quantization and training provides the basis for the second part of this deliverable. Here 
the architecture for a digital deep learning inference accelerator consisting of the accelerator subsystem 
developed by videantis and the decompression core developed by Fraunhofer IIS is presented as well as 
the architecture for an analog deep learning inference accelerator developed by Fraunhofer IIS and 
Fraunhofer EMFT.  

The digital accelerator subsystem consists of a number of videantis v-MP+ accelerator cores connected 
to an OCP bus fabric and to a multi-banked Local SRAM. The developed decompression core also is 
connected to this bus fabric and will work as coprocessing unit to the v-MP+ processor units.  

Afterwards, the architecture for the fully connected layers to be implemented with an analog deep 
learning inference accelerator is described. Here, the top-level architecture and interfaces for the  
analog accelerator, the connection between layers as well as an overview of the crossbar circuit for a 
fully connected layer is presented. Furthermore, Fraunhofer IIS and EMFT present possible solutions 
linked to the quantization and training sections for implementing the crossbar array architecture either 
with 3 bit weights or with 1 bit weights. For the analog accelerator the usage of the FeFET technology is 
planned. 

  

In the further project course, the presented digital and analog accelerator together will be used to run 
the neuronal networks of the use case partners InnoSent and Valeo. 
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