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INTELLIGENT HARDWARE!? ==
FROM DEEP NEURAL NETWORKS

TO NEUROMORPHIC

Artificial Intelligence

Machine Learning

Brain-Inspired

Neural
Networks

V. Sze, et al. “Efficient processing of deep neural networks:
A Tutorial and Survey”, Proc. of the IEEE, Vol. 105, No. 12, Dec. 2017
[ https://arxiv.org/abs/1703.09039 ]
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k-Means
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4 Expectation Maximization
Hierarchical Custering

Tuning model parameters based on available data =
"learning® without explicit programming

. Pattern Recognition

. Feature Extraction

Model Parameters

BRAIN-INSPIRED

Using artificial neural networks as machine learning model
. Multilayer perceptron

. Convolutional Neural Networks (CNN)

. Long Short Term Memory (LSTM)

. Spiking Neural Networks (SNN)

. Hierarchical Temporal Memory (HTM)
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MACHINE LEARNING
DEEP NEURAL NETWORKS
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MACHINE LEARNING
DEEP NEURAL NETWORKS
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100,000’s images

Training of CNN:

* Huge data set with known
objects to determine value
for millions of weights

Use of CNN for inference
= Use the trained network
to classify objects
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In embedded device
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MACHINE LEARNING USING DEEP NEURAL NETWORKS

>95% OF OPERATONS ARE MULTIPLY-ACCUMULATE

Conv-1
RelU-1
Pool-1
Conv-2
RelU-2
Pool-2
Conv-3
RelU-3
Conv-4
RelLU-4
Conv-5
RelU-5
Pool-5
RelU-6

>95% of computations: Multiply-Accumulate (MAC)
= Convolutional (Conv) layers: feature extractors 8
= Fully-Connected (FC) layers: classifiers "
Remaining functions (pooling, threshold, norma-

lization, ...) are critical for correct operation of
DNN but do not dominate performance

Top-1 accuracy [%]

Number of layers and number of weights growing =

in pursuit of better classification accuracy.
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E.g. ResNet-50:
- 50 layers
- 20+ Million weights
- 12 GOPs/inference
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Source: https://medium.com/towards-data-science/neural-network-architectures-156e5bad5 | ba

and arXiv:1605.07678v4
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DEEP NEURAL NETWORKS (CNN, LSTM)
MAINSTREAM DEEP LEARNING

= Convolutional Neural Networks: visual processing and object classification

Character recognition
Medical image analysis

People / face identification

= LSTM
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Time-series prediction, e.g. predict the weather or stocks

Action recognition, e.g. event detection in security cameras

Robotic movements, e.g. drive various joints based on sensory inputs

Speech recognition, e.g. ask Siri, Alexa, Cortana or Google assistant questions
Language models, e.g. Google translate

Anomaly detection, e.g. firewall applications in network traffic
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SMART SERVICES REQUIRE ENERGY-EFFICIENT MACHINE LEARNING
ENABLE SMART EDGE DEVICES ... GROWING DATACENTER INFERENCE WORKLOAD

» Growing work load for

@ ———— | ATENCY S— inference [Facebook]
ENERGY i
— PRIVACY msssssmsssss .

Figure 1: Server demand for DL inference across data centers

C\ https://arxiv.org/pdf/1811.09886.pdf
Consumer & IOT Infrastructure Cloud
Provider Provider
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HARDWARE PLATFORMS
FOR MACHINE LEARNING



TODAY’S DOMINANT PLATFORMS
TARGET HIGH-PERFORMANCE MARKET

= Focus on training of deep learning
algorithms

= General purpose platforms (GPU, FPGA)
support flexibility in still evolving field

= First application-specific IC (Google
TPU) emerge
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NEURAL NET ACCELERATORS (ASIC) EMERGE FOR INFERENCE

CONVENTIONAL DIGITAL CMOS

= Power efficiency
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PROGRAM OBJECTIVE
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OPPORTUNITIES FOR ANALOG IN-MEMORY COMPUTING
CHALLENGES OF VON NEUMANN COMPUTING

Control

Input » Ll ‘Output

VYon-Neumann architectures
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Challenges: Fundamental difficulties
in scalability of memory bandwidth

and capacity
Emerging Opportunities

Performing calculation in
memory

Non-volatile memory by limiting

the data transfer between
memory and CPU
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ANALOG COMPUTE IN-MEMORY



ANALOG COMPUTE-IN-MEMORY ACCELERATORS FOR ML
SUPPORTED BY NEW MEMORY TECHNOLOGY

Actiations |. Memristor (programmable resistor) stores weight
Weights value W, as an analog quantity: conductance Rw,

\1\1 Convolution 2. Activation X, applied as analog voltage Vin,
3. Ohm'’s law: memristor cell current ~ X,.W,

Vin_| \\\
‘ Rw_| \]‘

X Wij
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ANALOG COMPUTE-IN-MEMORY ACCELERATORS FOR ML
SUPPORTED BY NEW MEMORY TECHNOLOGY

|. Memristor (programmable resistor) stores weight
value W, as an analog quantity: conductance Rw,

Activations
Weights

Convolution 2. Activation X, applied as analog voltage Vin,
3. Ohm'’s law: memristor cell current ~ X,.W,
4. Kirchoff’s law: bit-line current ~ 3 X.WV,

Vin_| —ei—
Rw | 7%

w—
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ANALOG COMPUTE-IN-MEMORY ACCELERATORS FOR ML
SUPPORTED BY NEW MEMORY TECHNOLOGY

Activations
Weights
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= Use memory array for massive parallel analog implementation

of multiply-accumulate operations in DNN layer

= Memory array stores weights and implements

a logic function (MAC) in analog fashion Vin_4

—> compute-in-memory
—> computational memory
—> neuromorphic computing
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POOLING, THRESHOLDING, ... IN DIGITAL DOMAIN
DAC AND ADC REQUIRED

RelU-1
RelU-2
RelU-3
RelLU-4
RelU-5
RelU-6
RelU-7
\
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i —
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a; « Ty
Activations: AD| [AD AD
: | | ) -
-\5’VIVM level a, xV, Yo N YM-1 Quantized results of MAC
-voltage leve N digital computations
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0.25um x 0.25um active cell pitch

Q\QX 1024 x 4096 bit array = 16M cells/mm?

QQ’\°Q 16M x 100MHz = 1,600 TMAC/s/mm2
ANALOG COMPUTE-IN-MEMORY 10mm?2 | 01/MAC = 10 000 TOPSW (1 MAC =2 OP)
0.05f)/cell
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PROGRAM OBJECTIVE

Combine algorithm and
architecture optimization
with semiconductor
technology elements to
enable energy-efficient
implementation of DNNs
and beyond
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Algorithm optimization and
low-precision neural
network exploration

Machine
Learning
Program

System architecture
Integration of analog
neural network accelerators

Optimize device and
technology for energy-
efficient ML
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SYSTEM DESIGN-TECHNOLOGY CO-OPTIMIZATION
FOR
ANALOG COMPUTE-IN-MEMORY



ANALOG COMPUTE-IN-MEMORY ACCELERATORS FOR ML
CHALLENGES ...

Activations

Weights

CDF (%)
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You want

65,000 (2716) individually
reproducible conductance
values in each cell

Resistance

Memristor (programmable resistor) stores weight
value W, as an analog quantity: conductance Rw,

Activation X, applied as analog voltage Vin,
Ohm’s law: memristor cell current ~ X,.W,
Kirchoff’s law: bit-line current ~ 3 X. WV,

" pEs Yy |

Vin_| \\\ S
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Vin 3 — L. X
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ANALOG COMPUTE-IN-MEMORY ACCELERATORS FOR ML
CHALLENGES ...

Activations |. Memristor (programmable resistor) stores weight
Weighes value W, as an analog quantity: conductance Rw,

2. Activation X, applied as analog voltage Vin,
3. Ohm’s law: memristor cell current ~ X,.W,
4. Kirchoff’s law: bit-line current ~ 3 X.WV,

Vln_] \\ S < :
| > \ 1 2
i X% ! \
You want : -
\
\
3 65,000 (2132) individually . =
a reproducible conductance | g \
© values in each cell | 3 1 3
s | i 5 \
2F L -
03| g 7 " i
3

. 1 A 2 a 5
Resistance

) mec Readout current (A) <107¢ CONFIDENTIAL



HOW TO MAKE IT WORK? W7 ==
SYSTEM-TECHNOLOGY CO-OPTIMIZATION i o i
g 50 | 4 11
= Deep neural networks dE1) e
H H . e 1 2 3 4 5 277 E A
" Perform inference with lower precision sl w> . gt
= Can tolerate some weight variation Rw_3 i
Vin_4
= Neural network optimization . el %
A\
= Train neural network with information of '
implementation limitations
= |ncrease size of neural network to limit Weight device Jlil Weight device |
accuracy loss measurement fabrication Weight cell
. & periphery
= Architecture
. . N K Device & N K :
= Use multiple memory cells per weight for S architecture S
.. Training . & DC simulation
more Prec|s|on optlmal network
= Circuit and device
= Tune devices for neural network operation R LUET S
network
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NEURAL NETWORK OPTIMIZATION FOR ACiM
QUANTIZATION BRINGS PRECISION IN RANGE OF ACiM

Binary

Ternary

-1 0 |

= 0

Mule IIII
-1 0 I
Data range
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Accuracy loss due to

quantization can be mitigated
= Modified training procedure

=  Modified network structure:

= Higher #operations
= Simpler operations
= No accuracy loss for
key benchmark networks
using
= 3-levels for weight
= 5-levels for activations

=> In range of analog storage
elements and analog MAC

Accuracy (% correct)

/

# bits
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NEURAL NETWORK OPTIMIZATION FOR ACiM
TRAINWITH ACiM IMPERFECTIONS IN MIND

= Up to 10% noise on weights and
activations, and 50% LSB noise on MAC
can be mitigated by training.

LSTM (FP) 800K 32MB  79.2M

QLSTM 800K 200kB  79.2M
CNN (FP) 50K 200kB  3.5M
QCNN 50K 12.5kB  3.5M

ResNet-15 238K 952kB  894M
(Tang et al.2018)

- All quantization with 3-level weight, 7-level
activation, |5-level accumulation and additive noise

- CNN: 1D dilated, 45 filters

- ResNet-15 is state-of-the-art for KWS; uses
different preprocessing of data: filtering, more
cepstral components, different window length and
no input quantization layer.

“umec

Keyword spotting | # param #ACIM #ACIM Accuracy
(KWS) Model rows columns

100-400 1600 93%
100-400 1600 93.2%
135 315 94.3%
135 315 94.2%
405 585 95.8%
! Input: 39 features from MFCC '
[ FC (N=100) + BN ]
[ Quantize to 7 levels |
|D-conv: 453 filter, 2-dilation - BN - ReLU
ID - RelU
|D-conv: 4543 filter, - RelU
1D - RelU
|D-conv: 4543 filter, 8-dilation - BN - ReLU
|D-conv: 4543 flter, B-dilation - BN - ReLU
1D-conv: 45%3 filter, |6-dilation - BN - ReLU
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NEURAL NETWORK OPTIMIZATION FOR ACiM .

TRAINWITH ACiM IMPERFECTIONS IN MIND

= Up to 10% noise on weights and .
activations, and 50% LSB noise on MAC
can be mitigated by training.

e caolozs vy

(KWS) Model rows columns

800K 32MB 792M  100-400 1600 93%
QLSTM 800K 200k 792M  100-400 1600 93.2%
CNN (FP) 50K 200kB  35M 135 315 94.3%

QCNN 50K 12.5kB  3.5M 135 315 94.2%

ResNet-15 238K 952kB  894M 405 585 95.8%
(Tang et al.2018)

‘ Input: 39 features from MFCC '

- All quantization with 3-level weight, 7-level ‘ FC(N=100) + BN |
activation, |5-level accumulation and additive noise 1

- CNN: ID dilated, 45 filters \ Quantize to 7 levels |

- ResNet-15 is state-of-the-art for KWS; uses |

different preprocessing of data: filtering, more |D-conv: 45%3 filker, 2-dilation - BN - ReLU
| D-conv: 45%3 filter, 2-dilation - BN - RelLU

cepstral components, different window length and —
. . . | D-conv: 45%3 filter, 4-dilation - BN - RelU
no input quantization layer. | D-conv: 45+3 filcer, 4-dilation - BN - ReLU

| D-conv: 45*3 filter, 8-dilation - BN - ReLU

| D-conv: 45*3 filter, 8-dilation - BN - ReLU

1D-cony: 45*3 filter, |6-dilation - BN - ReLU
[ Global-average pooling |

[ Softmax layer ]
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MRAM based synaptic cell with
3-level weight encoding

Process variability
can be accounted

for during training | =

-1
MRAM measured data 0
- +]

0.999 4

act[N-1]

act[0]

colpair[0] colpair[M-1]

(
(
(

v Ty Ty

Ll alzw]
v T Ty

HB m AN AW L

AP, P)
P, P)

P, AP)

~

0.001 : w
: O 054

0.1 0.2 0.5 o
Conductance (uS) 0.1
0.01 A
0.001 -

Application accuracy

0.999 4

(4 -

0.99 1 i Oo b

0.9 1 AP ‘

0.5 1

0.14 0.99
0.01 0.9 1

¢
D‘3 0‘4

Variability on weight

777

/ Written

. weight

[ -1

f‘ ~o— 0

4 -1
|
vi

-2 -1 0 1 2

0.9994
0.991

0.9

0.5 i
¢ Improvemen

CDF (probit)

0.1

0.014

0.001 1 with variabili

due to training

t

Y

Error (%)

0.50 0.75 1.00 1.25 1.50 1.75 2.00

Read weight

m Baseline
B With ¢ of 10%
B With ¢ of 20%

CONFIDENTIAL



0.25um x 0.25um active cell pitch

Q\QX 1024 x 4096 bit array = 16M cells/mm?
QQXOQ 16M x 100MHz = 1,600 TMAC/s/mm2
ANALOG COMPUTE-IN-MEMORY 10mm2 " 02MAC = 10 000 TOPSIW (1 MAC = 2 0P
0.05f)/cell
ORDER OF MAGNITUDE MORE ENERGY-EFFICIENT A b ADoyzscol
7 o
: Imm2 i |
= Tune devices for VMG
analog MAC 1000000 ¢ ReET-34 o o
E o a & \ A
= Order of magnitude - = “;{j)matm) R 2 ° |
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ehavior L 1 . oA o R
= Algorithm mapping [ o 8 Yo
flexibility 100 LS 7\ . e o
= Integration with _ Y
digital functions and .- -
. . https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/
logic technologies 10 e
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= Upscale to Gigabytes

Log (Power) (W)
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CONCLUSIONS



CONCLUSIONS

= CNN and LSTM are the work horses for deep learning
* Huge computational complexity (Mult-Acc) and storage requirements (VWeights)

= High-performance compute architectures dominant platform for development and training phase

= GPU: | TOP/s/W, >100W
= Quantization of neural networks trade-off complexity vs. accuracy

= Key for low-energy digital neural network inference accelerators
= Binary neural network accelerators can approximate 100 TOP/s/W

= Necessity for mixed-signal and analog compute-in-memory implementations
= Inherent variability, stochastic behavior, noise limits precision of operations
= Promise large gain in energy efficiency to >1,000 TOP/s/W
= 3-level weights and 5b-activations provide required accuracy and are in range of Analog Compute-in-Memory
= Several cell architectures (MRAM, PCM, DRAM, SRAM-based) can enable ACiM accelerators

= Training procedures and network topologies are adapted to limit/eliminate accuracy loss
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In-memory

INTELLIGENT HARDWARE!? e ines are — . ‘
FROM DEEP NEURAL NETWORKS blurring! Analog w/ Mult.lx:zllzvge.ghts

TO NEUROMORPHIC Learning Sparse

On-line / few shot
learning

»
»

Artificial Intelligence

In-memory
Digital

Time / maturity

Machine Learning

Brain-Inspired

Neural

Networks Mixed Signal Need to build up:

acelerators * Algorithm insight

* Tool flows

Digital * The right abstraction levels

* The right intermediate representations

acelerators
* Diversity in HW but unified SWV stacks

V. Sze, et al. “Efficient processing of deep neural networks:
A Tutorial and Survey”, Proc. of the IEEE, Vol. 105, No. 12, Dec. 2017

[ https://arxiv.org/abs/1703.09039 ] Such that you do not need a PhD to

program our hardware

DNNs everywhere
Digital DNN
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Neuromorphic =



https://arxiv.org/abs/1703.09039

Lihnec

embracing a better life
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