TOWARDS NEXT-GENERATION COMPUTING

IN-MEMORY COMPUTING TECHNOLOGIES FOR DEEP NEURAL NETWORK ACCELERATION D.VERKEST

SMART SERVICES POWERED BY MACHINE LEARNING IN DATA CENTER

IMEC

SMART SERVICES POWERED BY MACHINE LEARNING IN DATA CENTER

IMEC

TODAY'S DOMINANT SOLUTION TARGET HIGH-PERFORMANCE MARKET

- Deep Neural Networks
 - CNN, LSTM
 - Vision, voice assistant
- General purpose platforms support
 - Training and inference
 - Flexibility in still evolving field
- Too power hungry for edge devices

5

TODAY'S DOMINANT ML PLATFORMS NOT FIT FOR SMART THINGS

- Intelligence at extreme edge
 - Support high performance DNN inference
 - Always-on
 - On a tight power budget
- → I to I0 PetaOP/s/W

10,000 TOPISIN

PUBLIC

PUBLIC

IMEC

- Vin Rw Vin 2 Rw Vin_3 Rw Vin_4 Rw $I \sim \sum_{i=0}^{N} x_i w_{ii}$ PUBLIC IMEC
- Use memory array for massive parallel analog implementation of multiply-accumulate operations in DNN layer
- Memory array stores weights <u>and</u> implements the neural network layer matrix-vector multiplication in analog fashion
 - ightarrow analog compute-in-memory
 - ightarrow computational memory
 - ightarrow neuromorphic computing

ANALOG CIM ACCELERATORS FOR ML PROMISING SOLUTION FOR ENERGY EFFICIENCY

- I0,000 TOP/s/W
 - Memory cell
 0.25µm x 0.25µm
 - I6M cells/mm² at I00MHz
 - I.6 PMAC/s/mm² for ~0.2fJ/MAC

65th

International

Electron Devices

Meetina

IMEC

10mm² 20,000^{T0P5/W}

Tue Dec 10, 2019, Focus session: Emerging AI hardware, Paper 22.2 by S. Cosemans, et al.

HOW TO MAKE IT WORK? SYSTEM-TECHNOLOGY CO-OPTIMIZATION

- Deep neural networks
 - Perform inference with lower precision
 - Can tolerate some weight variation
- Architecture
 - Use multiple memory cells per weight for more precision
- Circuit and device
 - Tune devices for neural network operation

ANALOG COMPUTE-IN-MEMORY ACCELERATORS FOR ML PROOF-OF-CONCEPT MATRIX-VECTOR MULTIPLICATION (MVM)

10,000 TOPS/W 1,000 TOPS/W SRAM-based Log speed (GOP/s) compute cells for 1000000 MVM of CNN and ЫТ LSTM 1,300 TOP/s/W 0 8V 100000 ANIA 2.700 TOP/s/W 0.6V FDX22 10000 4mm2 incl. 0-100-0 500k cells • mi • · (()) Ternary weights 1000 7-bit activations D. Bankman ISSCC2018 6-bit ADC (MAC) 100 Record efficiencies up Based on https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/ to 2,700 TOP/s/W 10 0.1 10 0.001 0.01 100 1000 Log (Power) (W)

embracing a better life

THANK YOU FOR YOUR ATTENTION

