

TOWARDS NEXT-GENERATION COMPUTING

TECHNOLOGICAL SOLUTIONS FOR IMPROVING THE FIGURES OF MERIT OF EDGE AI APPLICATIONS

Alexandre VALENTIAN

leti

TRENDS IN AI COMPUTING

TRENDS IN AI COMPUTING

The High Cost of Data Movement

Fetching operands costs more than computing on them

Bill Dally, "To ExaScale and Beyond", 2010

TRENDS IN EDGE COMPUTING

Increased computing efficiency

Weight quantization

Reduced bit accuracy

- Smaller memory footprint
- Lighter operations

Variable bit precision

Handling higher bit accuracy when needed

• For higher inference precision

Sparsity

Skip MAC operations

• When weight or intermediate result is 0

Increased storage efficiency

Near memory computing

Avoid external memory accesses

Weights

- Embedded Non-Volatile Memory Intermediate results
 - SRAM or Embedded DRAM

In-Memory computing

SRAM or Embedded NVM

Digital or analog

Von Neumann architecture

In-Memory Computing (IMC) architecture

Technological solutions for improving the figures of merit of Edge AI applications | imec - Leti workshop@IEDM | December 8, 2019

Multi valued RRAM technology compatible with advanced logic

- Cell density of 40F² is available at 28nm
- And compatible to sub-20nm

Roadmap from single bit to multi-bit* and beyond

• From 1 bit to 4 bit and beyond

* [T. Wu, ISSCC 2019]

Roadmap for increasing embedded cell density

 From 40F² down to 4F² thanks to new selector technology

Examples with technology available today

- ResNet50 (74 MB of weights) → 15 mm² of memory
- YoloV3 (101MB of weights) \rightarrow 20 mm² of memory

28nm RRAM integration

Selector and RRAM integration [IEDM 2019]

TRENDS IN AI COMPUTING

Back-propagation algorithm

- Necessitates to keep all intermediate results (activations)
- With a batch size of more than one
 - To not cycle too much the non-volatile memories

This requires a tremendous amount of activation memory

- Example YoloV3
 - A batch of 20 images requires 800MB of memory

Advantages

Increasing computing & memory capacity

Trends

- « Chipletization » : Generic computing templates, Heterogeneous technologies

Leti DISTRIBUTED MEMORY-CENTRIC EDGE AI COMPUTING ARCHITECTURE

Memory-Centric architecture

- No more global buffers
- No more power-hungry caches
- Fully distributed memory and control
- Energy efficient use of memory using 3D technology

Edge Al architecture, using

- Generic PE engines
- Vertically and horizontally connected computing clusters
- In-Memory Computing tiles (IMC)
- Dense NVM for storage
- DRAM for online learning

Trends in Edge AI applications

- Inference first
- Then lifelong local learning

Main challenge is to reduce data movement

This can be solved thanks to a combination of architecture and technology

- Combination of In-Memory Computing
- Non-volatile memory for synaptic weights
- 3D technology for heterogeneous integration

LETI is working to advance those technologies

THANK YOU FOR YOUR ATTENTION

